BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250903T050623EDT-3256RVFucj@132.216.98.100 DTSTAMP:20250903T090623Z DESCRIPTION:\n The Department of Mathematics and Statistics invites you to a ttend the Ph.D. Oral Defense of Mr. Kael Dixon\n\nTHESIS TITLE: Completion s of regular ambitoric 4-manifolds: Riemannian Kerr metrics and beyond\n\n \n\n\nCOMMITTEE MEMBERS\n\nChair\n David A. Stephens\, Professor\, Departme nt of Mathematics and Statistics\, ºÚÁÏÉç\n\nSupervisors\n Niky Kamran\, Professor\, Department of Mathematics and Statistics\, ºÚÁÏÉç Uni versity\n Vestislav Apostolov\, Professor\, Département de mathématiques\,  Université du Québec à Montréal \n\nInternal Examiner\n Jaques Hurtubise\, Professor\, Mathematics and Statistics\, ºÚÁÏÉç\n\nExternal Mem ber\n Alexander Maloney\, Associate Professor of Physics\, Department of Ph ysics\, ºÚÁÏÉç\n\nPro-Dean\n TBA\n\n\nABSTRACT\n\nWe show that t he conformal structure for the Riemannian analogues of Kerr black-hole met rics can be given an ambitoric structure. We then discuss the properties o f the moment maps. In particular\, we observe that the moment map image is not locally convex near the singularity corresponding to the ring singula rity in the interior of the black hole. We also study the Tomimatsu-Sato m etrics\, whichgeneralize the Kerr metrics. We show that these also admit R iemannian signature analogues\, and admit almost-complex analogues of ambi toric structures. We then proceed to classify regular ambitoric 4-orbifold s with some completeness assumptions. The tools developed also allow us to prove a partial classi cation of ompact Riemannian 4-manifolds which admi t a Killing 2-form.\n DTSTART:20160712T141500Z DTEND:20160712T161500Z LOCATION:1025 - Graduate Lounge\, Burnside Hall\, CA\, QC\, Montreal\, H3A 0B9\, 805 rue Sherbrooke Ouest SUMMARY:Ph.D. Oral Defense - Kael Dixon URL:/science/channels/event/phd-oral-defense-kael-dixo n-261651 END:VEVENT END:VCALENDAR